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1. INTRODUCTION

A compact spaceK is calledEberlein compact if it is homeomorphic to a weakly
compact subset of a Banach space and it has a strong influence on both the geometry
and topology of the Banach space it generates. Since the seminal paper by Amir and
Lindenstrauss [1], where they showed the interplay betweentopological and geometrical
properties of the so-called weakly compactly generated Banach spaces, a lot of research
has been done on this class of Banach spaces and their relatives such as weakly K-analytic,
weakly countably determined and weakly Lindelöf determined Banach spaces [42, 45, 26,
3, 38, 44, 39, 8, 16, 34, 35].

For a compact spaceK we have thatK is Eberlein compact if, and only if,C(K) is
weakly compactly generated [1];K is said to beTalagrand compactwhen(C(K), τp) is
K-analytic [42], i.e. there exists an onto usco mapϕ : N

N → 2(C(K),τp); andK is said to
beGul’ko compact if (C(K), τp) is K-countably determined [42, 45], i.e. there exists an
onto usco mapϕ : Σ ⊂ N

N → 2(C(K),τp). Main results are the fact thatK embeds in aΣ-
product of real lines wheneverK is Gul’ko compact [26] and thatK embeds in(c0(Γ), τp)
wheneverK is an Eberlein compact space [1]. Compact spaces lying inΣ-products of real
lines are calledCorson compactspaces [10, 25, 5, 20]. We denote byτp the pointwise
convergence topology on spaces of functions.

For an up-to-date account of these classes of compact spaces, as well as their interplay in
Functional Analysis, we recommend the books [6, 15, 17] together with the survey papers
[33, 30, 19], as well as some very recent papers [13, 2, 16, 4].We have the following
implications:

Eberlein compact⇒ Talagrand compact⇒ Gul’ko compact

⇒ Corson compact

and no arrow can be reversed, [15, 42, 5, 43].
Given a setA we shall denote by#A its cardinality and for a given family of subsets

A of a setX, givenx ∈ X we shall denote byord(x,A) = #{A ∈ A : x ∈ A}. We
say that the familyA is point finite(resp. point countable) if for every x ∈ X we have
ord(x,A) < ω (resp.ord(x,A) = ω), whereω is the cardinality of the set of the positive
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integers,N. A is saidσ-point finiteif A =
⋃

{An : n ∈ N} such that each familyAn is
point finite.

Let us recall that a topological space(X, τ) is metalindel̈of (resp. σ-metacompact) if
every open cover ofX has a point countable (resp.σ-point finite) open refinement. A
coverU of X is a weakθ-cover if U =

⋃

{Un : n ∈ ω} such that ifx ∈ X, then
0 < ord(x,Un) < ω for somen ∈ ω. X is weakly submetacompactif every open cover of
X has an open refinement which is a weakθ-cover (also calledweaklyθ-refinablespaces
[7] andσ-relatively metacompact[12]).

Gruenhage [20] characterized Corson (resp. Eberlein) compacta as those compact
spacesK such thatK2 is hereditarily metalindelöf (resp.σ-metacompact), or equivalently,
such thatK2 \ ∆ is metalindel̈of (resp.σ-metacompact), where∆ = {(x, x) ∈ K2 : x ∈
K} is the diagonal. There are Corson compact spaces which are not hereditarily weakly
submetacompact [22]. Nevertheless every Gul’ko compact space is hereditarily weakly
submetacompact, even more they are weaklyσ-metacompact according to [23], where the
following definition is introduced. In order to stress the difference between these concepts
we refer to [7, 23]

Definition 1. A topological space(X, τ) is weaklyσ-metacompact if for every open cover
U in X we have an open refinementV such thatV =

⋃

{Vn : n ∈ ω} and for everyx ∈ X
we have

V =
⋃

{Vn : ord(x,Vn) < ω}.

The paper of Gruenhage [23] had a strong influence in Functional Analysis since it
was the inspiration for proving fragmentability properties of Gul’ko compact spaces and
consequently that weakly countably determined Banach spaces are weak Asplund spaces
[15].

In view of the results mentioned above it is natural the conjecture posed by Gruenhage
that the conditionK is compact andK2 is hereditarily weaklyσ-metacompact would char-
acterize Gul’ko compact spaces (see [23, remark 2]). Our main results in this paper provide
a positive answer for this conjecture (see Theorema 9). In the course of the proof we shall
present a characterization of Gul’ko compact spaces in terms of networks, providing more
information on the relationship between Gul’ko compact spaces and compact spaces with
thelinking separability property, as it is presented by Dow, Junnila and Pelant [13]. In par-
ticular, the network obtained in any Gul’ko compact space, yields its hereditarily weakly
σ-metacompactness. Let us recall that fragmentability together with hereditarily weakly
submetacompactness imply to be descriptive in the sense of Hansell, [27], a property sat-
isfied by all Gul’ko compact spaces, [36], which has become very important in the study
of LUR renorming, [31].

Recall that a familyN of sets in a topological space(X, τ) is said to be anetworkfor
the topology if for every open setU ⊂ X and any pointx ∈ U there isN ∈ N such that
x ∈ N ⊂ U .

Gruenhage also asked (see [23, Remark 2]) if the weaker condition thatK Corson com-
pact andK2 hereditarily weakly submetacompact characterizes Gul’kocompact spaces.
In this case the answer is negative due to a previous example of Argyros and Mercourakis
[3] which we have discussed in [36], (see Remark 5). An example of a compact spaceK
such thatK2 is hereditarily weakly submetacompact and not Corson compact, and soK2

is not hereditarily metalindelöf, was already given in [23, Remark 2].
All our topological spaces are assumed to be Hausdorff and werefer the reader to [14,

15] for general background and for definitions of terms and concepts used below without
any explanation.
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2. ON WEAKLY σ-POINT FINITE FAMILIES

The combinatorial decomposition for weaklyσ-metacompactness can be presented with
the following definition, which has been used by Sokolov in [41] in order to give char-
acterizations of Gul’ko compact spaces in the spirit of Rosenthal’s theorem for Eberlein
compact spaces [40]:

Definition 2. A collectionU of subsets of a given setX is said to be weaklyσ-point finite
if U = ∪{Un : n = 1, 2, . . .} so that, for eachx ∈ X we have

U =
⋃

{Us : ord(x,Us) < ω}.

In our approach to prove Gruenhage’s conjecture we shall need to find handy conditions
characterizing weaklyσ-point finite families in a given setX. It is our intention to present
in this section some characterizations based on the latticestructure of the setK(M) :=
{K ⊂ M : K is compact}, whereM is a separable metric space. Let us begin with the
following notion:

Definition 3. Given a separable metric spaceM and a familyW of subsets of a given set
X, we say thatW is M -point finite if for every compact subsetK ∈ K(M) we have a
subfamilyWK of W such that

(i) W =
⋃

{WK : K ∈ K(M)};
(ii) WK1

⊂ WK2
wheneverK1 ⊂ K2 in K(M);

(iii) WK is a point finite family inX for everyK ∈ K(M).

Remark 1. It is enough to ask (i), (ii) and (iii) in Definition 3 for compact setsK in a
fundamental system of compact subsets ofM only. Indeed, letS ⊂ K(M) such that each
compact set inM is included into an element ofS. LetWS be defined for everyS ∈ S and
let (i)-(iii) above hold ifK(M) is replaced byS. For K ∈ K(M) putWK :=

⋂

{WS :
S ⊃ K,S ∈ S}. Then (i)-(iii) are satisfied.

Another way of describing weaklyσ-point finite families in a given setX is with the
concept ofweb[37], which allows us to see the combinatorial structure of weaklyσ-point
finite families in a way similar to a Souslin scheme [28].

ForΣ ⊂ N
N andW a family of subsets ofX we assume it is possible to assign to each

α ∈ Σ a subfamilyWα ⊂ W such thatW =
⋃

{Wα : α ∈ Σ}. Forβ = (bs) ∈ N
N and

n ∈ N we denote byβ|n the finite sequence(b1, b2, . . . , bn). If (a1, a2, . . . , an) is a finite
sequence of positive integers, then we write

Wa1,a2,...,an
:=

⋃

{Wβ : β ∈ Σ, β|n ≡ (a1, a2, . . . , an)}

(it could be empty when there is noβ in Σ with β|n = (a1, a2, . . . , an)) and we have a
‘web of subfamilies’: i.e.

W =

∞
⋃

n=1

Wn; . . . ;Wn1,n2,...,nk
=

∞
⋃

m=1

Wn1,n2,...,nk,m

for everyn1, n2, . . . , nk ∈ N andk ∈ N.

Definition 4. We say that a familyW of subsets ofX is web-point finite if there isΣ ⊂ N
N

and a web of subfamilies as above, so that for everyα ∈ Σ and for everyx ∈ X there is
an integern0 := n(α, x) such that

ord(x,Wα|n0
) < ω

The following results collects the characterizations we are looking for:

Theorem 1. For a nonempty setX and a familyW of subsets on it, the following are
equivalent:

(i) W is weaklyσ-point finite,
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(ii) W is M -point finite for a suitable separable metric space(M,d),
(iii) W is Σ-point finite for a suitableΣ ⊂ {0, 1}N,
(iv) W is Σ-point finite for a suitableΣ ⊂ N

N.
(v) W is web-point finite.

Proof. (ii) ⇒ (i) Let us considerdH the Hausdorff distance onK(M), i.e.

dH(A,B) := sup{d(a,B), d(A, b) : a ∈ A, b ∈ B}

and we have(K(M), dH) is a separable metric space too. Then, we claim that for every
K ∈ K(M) and everyx ∈ X there exists a neighbourhoodV of K in (K(M), dH) such
that

ord(x,
⋃

{WS : S ∈ V }) < ω.

Indeed, if this is not the case for somex ∈ X andK ∈ K(M), we could findW1 such that

x ∈ W1 ∈
⋃

{WS : S ∈ BdH
(K, 1)}.

Now, assume the setsW1, . . . ,Wn are already defined for somen ∈ N. We can findWn+1

such that

x ∈ Wn+1 ∈
⋃

{WS : S ∈ BdH
(K, 1

n+1 )} \ {W1,W2, . . . ,Wn}.

Now, forn ∈ N find Kn ∈ BdH
(K, 1

n ) so thatWn ∈ WKn
and putK∞ := K∪K1∪K2∪

. . . This is an element ofK(M) and soord(x,WK∞
) is finite, which is a contradiction,

sincex ∈ Wn ∈ WK∞
for everyn ∈ N.

Let us now fix a countable basisB for the space(K(M), dH) and define

W(B) :=
⋃

{WK : K ∈ B}

for every B ∈ B. We will haveW =
⋃

{W(B) : B ∈ B} and for everyx ∈ X,
W =

⋃

{W(B) : ord(x,W(B)) < ω,B ∈ B}. Indeed, for everyK ∈ K(M) our claim
above provides us with an elementV ∈ B such thatK ∈ V andord(x,W(V )) < ω.

(i) ⇒ (iii) Since W is weaklyσ-point finite there are countably many subfamilies of
W such thatW =

⋃

{Wn : n = 1, 2, . . .} with the property that for everyx ∈ X the
following holds

W =
⋃

{Ws : ord(x,Ws) < ω} (∗)

For everyV ∈ W let us consider the elementP (V ) ∈ {0, 1}N defined by

P (V )(n) =
{

0 if V /∈Wn

1 if V ∈Wn

and let us callΣ := {P ∈ {0, 1}N : P = P (V ) for someV ∈ W}. Let us note that for
everyP ∈ Σ the familyWP := {V ∈ W : P (V ) = P} is a point finite family inX. In-
deed, givenP ∈ Σ andx ∈ X suppose#{V ∈ WP : x ∈ V } = ω. Enumerate these sets
as{Vn}

∞
n=1 and let{sm}∞m=1 be a sequence of positive integers such thatord(x,Wq) < ω

if and only if q ∈ {sm}. Hence, for every fixedi ∈ N we haveVn /∈ Wsi
for all large

n ∈ N, and soP (si) = P (Vn)(si) = 0. ThusP (si) = 0 for all i ∈ N, and therefore
P (Vn)(si) = 0, i.e.,Vn /∈ Wsi

for all n, i ∈ N. However, asW =
⋃

{Wsi
: i ∈ N} by

(∗), we have a contradiction.
In fact, this argument can be extended to show that for every compactK ⊂ Σ ⊂ {0, 1}N

the familyWK := {V ∈ W : P (V ) ∈ K} is point finite inX. Indeed, givenx ∈ X
andK ⊂ Σ compact, let{s1, s2, . . . , sn, . . .} = {s ∈ N : ord(x,Ws) < ω}. If #{V ∈
WK : x ∈ V } were infinite, put them into a sequence{Vn}. SinceK is compact we may
assumeP (Vn) converges to someP (V ) ∈ K, with V ∈ W. Now for everyj ∈ N, only
finitely many members of{Vn : n = 1, 2, . . .} can be inWsj

, soP (Vn)(sj) = 0 for n
large enough. ThusP (V )(sj) = 0 for all j ∈ N, and this meansV /∈ W =

⋃

{Wsj
: j =

1, 2, . . .} which is a contradiction.
(iii) ⇒ (iv) ⇒ (ii) are obvious.
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(ii) ⇒ (v) Since(K(M), dH) is a separable metric space, there is a subsetΣ ⊂ N
N and

a continuous onto mapϕ : Σ → (K(M), dH). If we simply define

Wα := Wϕ(α)

we obtain the web-point finite decomposition of Definition 4 because of our claim in the
proof (ii) ⇒ (i) above, together with the continuity ofϕ.

(v) ⇒ (i) The web{Wn1,n2,...,nk
: n1, n2, . . . , nk ∈ N} is a countable family of sub-

families ofW which satisfies Definition 2, since for everyx ∈ X andα ∈ Σ there isn0

such thatord(x,Wα|n0
) < ω. �

For the corresponding covering property of Gruenhage we have

Corollary 2. A topological space(X, τ) is weaklyσ-metacompact if, and only if, every
open cover has anM -point finite open refinement for some separable metric spaceM .

It is a simple consequence of Definition 2 that every weaklyσ-point finite family of
subsets of a given setX is point countable. For this reason, the theorem by Mercourakis
[29, Theorem 3.3] giving a Rosenthal’s type characterization for Gul’ko compact spaces
reads now as follows:

Theorem 3. For a compact spaceK the following are equivalent:

(i) K is a Gul’ko compact space,
(ii) there is a separable metric spaceM together with anM -point finite familyF of

openFσ-sets inK which isT0-separating, i.e. such that for everyx andy in K,
x 6= y, there isA ∈ F such that#A ∩ {x, y} = 1.

Proof. After Theorem 1 it is reduced to Mercourakis’ Theorem 3.3 in [29]. �

Remark 2. Sokolov’s characterization[41] says thatK is a Gul’ko compact space if, and
only if, K has a weaklyσ-point finiteT0-separating family of openFσ-sets. Our Theorem
1 shows that both Sokolov’s and Mercourakis’ Theorems are, in fact, the same result. (See
footnote 1 in Gruenhage’s paper[23]). The notion ofΣ-point finite family appears for the
first time in Mercourakis’ Theorem 3.3 in[29]. The study ofK-analytic andK-countably
determined spaces using the lattice structure ofK(M) began with M. Talagrand[42], see
also[9].

Remark 3 (Index-Σ-point finite families). Given an indexed family of subsets of a given
setX, A = {Ai : i ∈ I}, andx ∈ X we may consider the “index-order” of the point in
the family, i.e.#{i ∈ I : x ∈ Ai} instead of#{A ∈ A : x ∈ A}.

For instance, we shall say that the indexed familyA = {Ai : i ∈ I} is index-weakly
σ-point finite ifI =

⋃

{In : n = 1, 2, . . .} in such a way that for eachx ∈ X we have

I =
⋃

{Is : #{i ∈ Is : x ∈ Ai} < ω}

For two familiesA = {Ai : i ∈ I} andB = {Bj : j ∈ J} we say thatA is an indexed
subfamily ofB if there is a one-to-one mapξ : I → J such thatAi = Bξ(i) for all i ∈ I.

Given a separable metric spaceM and an indexed familyA = {Ai : i ∈ I} of a given
setX, we shall say thatA is index-M-point finite if for every compact subsetK ∈ K(M)
we have a subsetIK ⊂ I such that if we denote byAK := {Ai : i ∈ IK}

(i) I =
⋃

{IK : K ∈ K(M)},
(ii) AK1

is an indexed subfamily ofAK2
wheneverK1 ⊂ K2 in K(M),

(iii) For everyx ∈ X andK ∈ K(M) #{i ∈ IK : x ∈ Ai} < ω.

Of course, Theorem 1 remains true for these notions. In particular, a familyA = {Ai :
i ∈ I} is index-weaklyσ-point finite if, and only if,A is index-M-point finite for a suit-
able separable metric spaceM . We shall use later these facts. A proof follows the same
arguments used in Theorem 1 with a bit of extra care. For instance, we need the following:
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Lemma 1. LetA = {Ai : i ∈ I} be an index-M-point finite family of subsets of a given
setX. Then for everyx ∈ X and K ∈ K(M) there is a neighbourhoodV of K in
(K(M), dH) such that

#{i ∈
⋃

{IS : S ∈ V } : x ∈ Ai} < ω

Proof. If this is not the case, we choose, for every positive integern,

{in1 , . . . , inn} ⊂
⋃

{IS : dH(S,K) <
1

2n
},

with x ∈ Ain
j

for j = 1, 2, . . . , n andinj 6= ink if j 6= k. If inj ∈ Sn
j with dH(Sn

j ,K) < 1
2n ,

j = 1, 2, . . . , n we shall consider the sequence

{S1
1 , S2

1 , S2
2 , . . . , Sn

1 , Sn
2 , . . . , Sn

n , . . .} in K(M)

which converges toK, so

K∞ := S1
1 ∪ S2

1 ∪ S2
2 ∪ . . . ∪ Sn

1 ∪ . . . ∪ Sn
n ∪ . . . ∪ K

is a compact subset ofM with K∞ ⊃ Sn
j for n = 1, 2, . . ., j = 1, 2, . . . , n, andAsn

j
is an

indexed subfamily ofAK∞
for n = 1, 2, . . ., j = 1, . . . , n.

Thus{in1 , in2 , . . . , inn} ⊂ ISn
j

corresponds with a set ofn different points{i∞,n
1 , i∞,n

2 , . . .

i∞,n
n } in the index setIK∞

with x ∈ Ai∞,n

j
, j = 1, 2, . . . , n, for everyn ∈ N, which is a

contradiction with the fact that

#{i ∈ IK∞
: x ∈ Ai} < ω

�

Once we have this Lemma, the proof of Theorem 1 for indexed families follows the same
pattern. Let us show, for example, that an index-weaklyσ-point finite familyA = {Ai :
i ∈ I} must be index-Σ-point finite for a suitableΣ ⊂ {0, 1}N. By assumption we have
I =

⋃

{In : n ∈ N} so that, for eachx ∈ X, we haveI =
⋃

{Is : #{i ∈ Is : x ∈ Ai} <
ω}. For everyi ∈ I we considerP (i) ∈ {0, 1}N defined by

P (i)(n) =

{

0 if i /∈ In

1 if i ∈ In

andΣ := {P ∈ {0, 1}N : P = P (i) for somei ∈ I}. Then forK compact subset ofΣ, we
setIK := {i ∈ I : P (i) ∈ K} and we have:

(i) I =
⋃

{IK : K ∈ K(Σ)} since, for everyi ∈ I, P (i) ∈ Σ.
(ii) IK1

⊂ IK2
wheneverK1 ⊂ K2 are compact subsets ofΣ.

(iii) For every K ∈ K(Σ) and x ∈ X we have#{i ∈ IK : x ∈ Ai} < ω. If not,
we would have a sequence{in} with P (in) ∈ K andx ∈ Ain

for n = 1, 2, . . . SinceK
is compact we may and do assume that{P (in) : n = 1, 2, . . .} converges toP (i) ∈ K
for somei ∈ I. Sincex ∈ Ain

, n = 1, 2, . . . we havei /∈ Is for any s such that
#{i ∈ Is : x ∈ Ai} < ω. But this contradictsI =

⋃

{Is : #{i ∈ Is : x ∈ Ai} < ω} and
the proof is over.

3. NETWORKS FORc1(X)

Following Mercourakis [29] we shall work with the space

c1(X) := {f ∈ ℓ∞(X) : ∀ε > 0 the set{t ∈ X : |f(t)| ≥ ε} is closed

and discrete inX},

for a given topological spaceX, and we shall consider it as a Banach space endowed
with the supremum norm, i.e. a closed subspace ofℓ∞(X). For everyf ∈ c1(X) and
every compact subsetK of X we havef|K ∈ c0(K) because a closed and discrete subset
of a compact space must be finite. So whenX is a compact space, we havec1(X) ≡
c0(X). The important case for us is whenX is K-countably determined. Indeed, a main
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result of Mercourakis [29] is the fact that a compact spaceX is a Gul’ko compact if, and
only if, X embeds in a spacec1(Y ), with the pointwise convergence topology, for some
K-countably determined spaceY . Our main objective here is to show the existence of
suitable networks in spaces(c1(Y ), τp), for K-countably determined spacesY , which will
characterize Gul’ko compact spaces in section 4.

Networks were introduced by Arkangel’skii in 1958 and they have been very useful since
then. They have become a prominent tool in renorming theory after the seminal paper of
Hansell, [27], who showed that different kind of networks inBanach spaces are related
to fragmentability properties, [31]. Thelinking separability property(LSP, for short), is
another tool we have used to connect networks for different metric spaces [34, 35, 32].
Dow, Junnila and Pelant have characterized quite recently,[13] the LSP in terms of a net-
work condition too. For compact spaces, this condition liesstrictly between being Gul’ko
compact and Corson compact, [13]. It is a natural question inthis context to look for a suit-
able network characterization of Eberlein, Talagrand, Gul’ko and Corson compact spaces.
Eberlein compacta are characterized in [13] too. We will present here characterizations for
Talagrand and Gul’ko compacta. In order to deal with the LSP and the Eberlein compact
case, the following notion becomes essential, as it is shownin [13].

Definition 5. A familyL of subsets of a topological space(X, τ) is said to be point-finitely
(resp. point-countably) expandable if there exists a family of open sets{GL : L ∈ L} such
thatL ⊂ GL for everyL ∈ L and, for everyx ∈ X, the family{L ∈ L : x ∈ GL} is finite
(resp. countable). The familyL is said to beσ-point-finitely expandable if we can write
L =

⋃

{Ln : n ∈ N} so that each familyLn is point-finitely expandable.

Dow, Junnila and Pelant characterize the LSP in a topological space by the existence
of aσ-disjoint and point-countably expandable network. They show that a compact space
is an Eberlein compact if, and only if, it has aσ-point-finitely expandable network. This
fact, together with Gruenhage’s characterization of Eberlein compact spaces as those com-
pacta whose complement of the diagonal is aσ-metacompact space, [20], gives the proof.
Indeed, if one has aσ-point-finitely expandable network in a topological spaceX, it fol-
lows thatX is hereditarilyσ-metacompact, [13]. Our aim is to follow the same ideas for
Gul’ko compact spaces. We construct the appropiate expandable network in(c1(Y ), τp)
which will give us the hereditarily weaklyσ-metacompactness property thanks to our re-
sults from section 2.

After our study ofΣ-point finite families in section 2 we introduce now the following
definition (see Remark 3).

Definition 6. Let A be a family of sets in a topological space(X, τ). A is said to be
Σ-point-finitely expandable ifA can be indexed asA = {Ai : i ∈ I} and for everyi ∈ I
there exists an open setGi ⊃ Ai in X such that the indexed family{Gi : i ∈ I} is index-
Σ-point finite; i.e. for a suitable separable metric spaceM we have, for everyK ∈ K(M),
subsetsIK ⊂ I such that:

(i) I =
⋃

{IK : K ∈ K(M)},
(ii) {Gi : i ∈ IK1

} is an indexed subfamily of{Gi : i ∈ IK2
} wheneverK1 ⊂ K2 in

K(M),
(iii) For everyx ∈ X andK ∈ K(M) we have

#{i ∈ IK : x ∈ Gi} < ω

Now we can formulate our main result in this section:

Theorem 4. Let(X, τ) be aK-countably determined topological space. Then(c1(X), τp)
has aΣ-point-finitely expandable network.

Proof. Let us begin with the particular case of(X, τ) being a compact space. Then
c1(X) ≡ c0(X) and we follow Hansell’s construction in [27, Theorem 7.5]. Let us be
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precise with all the details since we shall need all of them for the proof of the non-compact
case. A close construction is the one presented in [13].

Let us fix I = {In;n = 1, 2, . . . } a countable basis for the topology ofR \ {0} made
of bounded open intervals such that for eachn there is anε > 0 such that eitherIn ⊂
(−∞,−ε) or In ⊂ (ε,+∞). Let us fix an integern ∈ N and the firstn elements from
I; i. e. In := {I1, I2, . . . , In}. We shall consider mapsϕ : Λ −→ In whereΛ ⊂ X, i.
e. we choose ”doors” fromIn for every pointx ∈ Λ, and we need only finite sets, i. e.
#Λ < +∞, to describe the topologyτp. So let us consider, for fixedn ∈ N,

Mn := {(Λ, ϕ); Λ ⊂ X,#Λ ≤ n andϕ : Λ −→ In}

and define for(Λ, ϕ) ∈ Mn theτp−open set

R(Λ, ϕ) := c0(X) ∩
∏

x∈X

Rx whereRx =

{

ϕ(x) if x ∈ Λ,

R otherwise.

Moreover, form ∈ N let us define

Rm(Λ, ϕ) := c0(X) ∩
∏

x∈X

Rx whereRx =

{

ϕ(x) if x ∈ Λ,

(−1/m, 1/m) otherwise

and we have
Rm(Λ, ϕ) ⊂ R(Λ, ϕ)

and the family
Rn := {R(Λ, ϕ); (Λ, ϕ) ∈ Mn}

consists ofτp−open subsets ofc0(X) and it is a point finite family inc0(X) for every fixed
n ∈ N. Indeed, givenf ∈ c0(X) such that,f ∈ R(Λm, ϕm) with {(Λm, ϕm) : m ∈ N}
an infinite set inMn, then

⋃

{Λm : m ∈ N} must be infinite too, since eachϕm takes
values in the finite setI = {I1, . . . , In} andn is fixed. Hence, for some infinite setY ⊂ X
and for someIj , 1 ≤ j ≤ n, we havef(y) ∈ Ij for all y ∈ Y , but this contradicts the fact
thatf ∈ c0(X) sinceIj is bounded away from zero.

We set form,n ∈ N

Rm,n := {Rm(Λ, ϕ); (Λ, ϕ) ∈ Mn}

and we have that∪∞
m,n=1Rm,n is an open basis of the‖ · ‖∞-topology in c0(X) and

each familyRm,n is expandable to the familyRn which is formed byτp−open sets and
it is a point finite family inc0(X). Indeed, iff ∈ c0(X) andm is a positive integer, if
‖f‖∞ < 1

m , let Λ = ∅, otherwise let

Λ = {x1, x2, . . . , xk} = {x ∈ X : |f(x)| ≥
1

m
}

and chooseIni
∈ I for i = 1, 2, . . . , k, such that

f(xi) ∈ Ini
⊂ (f(xi) −

1

m
, f(xi) +

1

m
).

Let n = max{k, n1, n2, . . . , nk} and defineϕ : Λ → {I1, I2, . . . , In} so thatϕ(xi) = Ini

for i = 1, 2, . . . , k. Then(Λ, ϕ) ∈ Mn and

f ∈ Rm(Λ, ϕ) ⊂ B‖·‖∞
(f,

1

m
).

So we have aσ-point-finitely expandable network in(c1(X) ≡ c0(X), τp) whenX is a
compact space.

Let us show the case when(X, τ) is K-countably determined. So we will have a sepa-
rable metric spaceM such thatX = ∪{XK ;K ∈ K(M)} whereXK are compact subsets
of X andXK1

⊂ XK2
wheneverK1 ⊂ K2 in K(M), [9]. If we make the construction we

have done in the compact case for everyK ∈ K(M); i. e. on everyc0(XK), then we shall
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arrive to aΣ-point-finitely expandable network in(c1(X), τp). Let us be more precise and
for every fixed integern and every fixedK ∈ K(M) we shall consider:

M(n,K) := {(Λ, ϕ); Λ ⊂ XK ;#Λ ≤ n andϕ : Λ −→ In}

and we write, as before,

R(Λ, ϕ) := c1(X) ∩
∏

x∈X

Rx whereRx =

{

ϕ(x) if x ∈ Λ,

R otherwise.

and

Rm(Λ, ϕ, K) := c1(X) ∩
∏

x∈X

Rx whereRx =











ϕ(x) if x ∈ Λ,

(− 1

m
, 1

m
) if x ∈ XK \ Λ,

R if x 6∈ XK .

and we have
Rm(Λ, ϕ,K) ⊂ R(Λ, ϕ)

and the family
R(n,K) := {R(Λ, ϕ); (Λ, ϕ) ∈ M(n,K)}

is made ofτp−open subsets ofc1(X) and it is a point finite family inc1(X) for every fixed
n ∈ N andK fixed. Indeed, everyh ∈ c1(X) verifiesh|XK

∈ c0(XK) and therefore

#{(Λ, ϕ) ∈ M(n,K);h ∈ R(Λ, ϕ)} < +∞

as we have already seen in the compact case.
To describe the network we are looking for we take

N := {Rm(Λ, ϕ,K) : (Λ, ϕ) ∈ M(n,K),m, n ∈ N andK ∈ K(M)}

N is a network for the pointwise topology inc1(X) since{Rm(Λ, ϕ,K) : n,m ∈ N}
provides a basis for the topology of uniform convergence on the setXK , as in the compact
case. ThusN is a basis for the topology of uniform convergence on the sets{XK : K ∈
K(M)}, a topology finer thatτp since every finite setF of X is contained in someXK

with K ∈ K(M). It remains to show thatN is Σ-point-finitely expandable. Our set of
indexes to describeN is:

I := {(m,n,K,Λ, ϕ) : (Λ, ϕ) ∈ M(n,K),m, n ∈ N ,K ∈ K(M)}

and we set fori = (m,n,K,Λ, ϕ) ∈ I theτp-open set

Gi := R(Λ, ϕ) ⊃ Rm(Λ, ϕ,K) =: Ni

Let us consider the metric spaceN × M whereN is endowed with the discrete topology.
Let us denote byπ1 : N × M → N andπ2 : N × M → M the canonical projections. For
a compact subsetS of N × M we set

IS := {(m,n,K,Λ, ϕ) : (Λ, ϕ) ∈ M(n,K),m, n ∈ {1, 2, . . . , q}}

whereq = max π1(S) andK = π2(S).
We can write
(i) I = ∪{IS : S ∈ K(N × M)}. Of course we have{Gi : i ∈ IS1

} is an indexed
subfamily of{Gi : i ∈ IS2

} wheneverS1 ⊂ S2 becauseM(n, π2(S1)) ⊂ M(n, π2(S2))
for everyn = 1, 2, . . ..

(iii) If q = max π1(S) andK = π2(S) for the compact subsetS of N × M , we have

#{(m,n,K,Λ, ϕ) = i ∈ IS : f ∈ Gi = R(Λ, ϕ)}

≤

q
∑

n=1

q · (#{(Λ, ϕ) ∈ M(n,K) : f ∈ R(Λ, ϕ)}) < ω

becauseR(n,K) was a point finite family inc1(X) and the proof is over. �

For the corresponding covering property we have:
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Proposition 5. Let (X, τ) be a topological space with aΣ-point finitely expandable net-
work. ThenX is hereditarily weaklyσ-metacompact.

Proof. The hereditarily weaklyσ-metacompactness will follow if we can find, for every
arbitrary familyV of open subsets ofX, a weaklyσ-point finite open refinement ofV. So,
let us fixV andΩ := ∪V. Let N = {Ni : i ∈ I} be theΣ-point-finitely expandable
network for(X, τ); i.e. for a suitable separable metric spaceM we haveIK ⊂ I for every
K ∈ K(M) and open setsGi ⊃ Ni for every i ∈ I such that{Gi : i ∈ I} satisfies
conditions (i) to (iii) in Definition 6. Givenx ∈ Ω we can findi ∈ I with

x ∈ Ni ⊂ V ∈ V

by definition of network.
SetJ := {i ∈ I : Ni ⊂ V for someV ∈ V} and choose, for everyj ∈ J , an open set

V (j) ∈ V with Nj ⊂ V (j). Now we can define the open refinement ofV by

W := {Gj ∩ V (j) : j ∈ J}

with ∪W = Ω. Moreover, since{Gi : i ∈ I} is an index-Σ-point finite family we know
thatI = ∪In and for everyx ∈ X we also have

I = ∪{Is : #{i ∈ Is : x ∈ Gi} < ω},

(see Remark 3). Of course, if we denote byJn := J ∩ In, we haveJ = ∪{Jn : n =
1, 2, . . .} and for everyx ∈ X

J = ∪{Js : #{j ∈ Js : x ∈ Gj ∩ V (j)} < ω}

since#{j ∈ Js : x ∈ Gj ∩ V (j)} < ω whenever#{i ∈ Is : x ∈ Gi} < ω. SoW is a
weaklyσ-point finite open refinement ofV. �

Corollary 6. For everyK-countably determined topological spaceX, then the space
(c1(X), τp) is hereditarily weaklyσ-metacompact and, in particular, hereditarily submeta-
compact.

As a consequence we obtain now Theorem 2 in [23]:

Corollary 7. Every Gul’ko compact space has aΣ-point-finitely expandable network and
it is hereditarily weaklyσ-metacompact too.

Proof. It is a consequence of Mercourakis’ theorem ([29, Theorem 3.1]) saying that ev-
ery Gul’ko compact space is homeomorphically embedded in(c1(Y ), τp) for someK-
countably determined spaceY together with theorem 4 and proposition 5. �

Remark 4. For Σ ⊂ N
N andΓ any set, it is defined[15, 11]

c1(Σ × Γ) := {f ∈ ℓ∞(Σ × Γ) : f|K×Γ ∈ c0(K × Γ) for everyK ⊂ K(Σ)}

It follows adding one point∞ thatΣ×Γ∪{∞} will be K-countably determined, see[29,
Definition 1.3], thenc1(Σ×Γ) can be seen as the subspace ofc1(Σ×Γ∪{∞}) formed by
the functions vanishing at∞. Thus, forΣ ⊂ N

N andΓ any set the space(c1(Σ × Γ), τp)
has aΣ-point-finitely expandable network and it is hereditarily weaklyσ-metacompact
too.

4. COVERING PROPERTIES ONX2 \ ∆

Following Gruenhage and Michael [24] we say that an open cover G of a topological
space(X, τ) can be shrunk if there exists an indexed closed cover

{AG;G ∈ G}

such thatAG ⊂ G for everyG ∈ G.
We shall need the following result in the course of the proof of our theorem 9. The cases

of metalindel̈of or σ-metacompact has been considered in [24], now we need the proof for
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the weaklyσ-metacompact case. Fortunately the same arguments as in [24] also work this
time:

Proposition 8. Let(X, τ) be a weaklyσ-metacompact, locally compact space, and letB a
basis for(X, τ). ThenX has a subcoverB′ ⊂ B such that the indexed family{B;B ∈ B′}
is an index-Σ-point finite family inX.

Proof. Let G be an open cover ofX by open sets with compact closures and letV be an
M -point finite open refinement ofG (corollary 2), for a suitable separable metric space
M . By [24, Theorem 1.1] the coverV can be shrunk to a closed cover{AV ;V ∈ V}. If
V ∈ V, thenAV is compact, so there is a finite familyBV ⊂ B such thatBV coversAV

and such thatB ⊂ V for everyB ∈ BV . The collectionB′ =
⋃

{BV ;V ∈ V} is such
that{B;B ∈ B′} is Σ-point finite. Indeed, sinceV esM -point finite, we know that for
everyK ∈ K(M), VK is a point finite subfamily ofV, V =

⋃

{VK ;K ∈ K(M)} and
VK1

⊂ VK2
wheneverK1 ⊂ K2. Let us define forK ∈ K(M)

B′
K :=

⋃

{BV ;V ∈ VK}

then we have
B′ = ∪{B′

K ;K ∈ K(M)}

andB′
K1

⊂ B′
K2

wheneverK1 ⊂ K2 in K(M). Moreover, for everyK ∈ K(M) we have
{B;B ∈ B′

K} is point finite becauseVK is a point finite family and for everyV ∈ VK

only a finite number of elements of{B;B ∈ B′
K} has been considered, exactly the ones

in the familyBV . �

Finally we are ready for the proof of our main result:

Theorem 9. The following are equivalent for a compact spaceX.

(i) X is Gul’ko compact;
(ii) X2 \ ∆ is weaklyσ-metacompact;
(iii) X2 is hereditarily weaklyσ−metacompact;
(iv) X admits aΣ-point-finitely expandable network.

Proof. (i)⇒(iv) It follows from Corollary 7.
(iv)⇒(iii) Because the property of having aΣ-point-finitely expandable network is sta-

ble by finite products together with our Proposition 5.
(iii)⇒(ii) It is trivial.
(ii)⇒(i) We shall follow the proof of [20, Theorem 2.2] adding the details for our case

here. Indeed ifX2 \∆ is weaklyσ-metacompact, then by the proof of Proposition 8 there
is a cover

P = {Uγ × Vγ ; γ ∈ A}

of X2 \ ∆ such that:

(a) Uγ andVγ are openFσ in X, (take the original cover in Proposition 8 with sets
U × V with U andV beingFσ-sets).

(b) Uγ ∩ Vγ = ∅, ∀γ ∈ A.
(c) {Uγ × Vγ ; γ ∈ A} is an index-Σ-point finite family inX2 \ ∆.
(d) U × V ∈ P impliesV × U ∈ P.

Now if dens X = µ andX = {pα;α < µ}, we set for eachα < µ

Xα := {pβ ;β < α}

and

Uα := {∩γ∈F Uγ ;F ⊂ A and{Vγ ; γ ∈ F} is a finite minimal cover ofXα}.

Note thatUα coversX \ Xα. Then the family
⋃

{Uβ ;β < µ} is T0-separating as in
[21, Theorem 2.2, Claim 2]. And moreover

⋃

{Uβ ;β < µ} is a Σ-point finite family
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in X. Indeed, by (c) we know that there is a separable metric spaceM such thatA =
∪{AK ;K ∈ K(M)}, with {Uα × V α;α ∈ AK} point finite for everyK ∈ K(M) and
AK1

⊂ AK2
wheneverK1 ⊂ K2 in K(M) (that is the case in the proof of Proposition 8).

For K ∈ K(M) andn ∈ N fixed, letUK
α,n be all members ofUα whose corresponding

index setF has cardinality≤ n, and it is contained inAK . Then
⋃

{UK
α,n : α < µ} is a

point finite family inX. Indeed, if there isx ∈ X that belongs to infinitely many members
of

⋃

α<µ UK
α,n, then forq ∈ N we find ordinalsβq < µ and setsFq ⊂ AK such that

#Fq ≤ n, x ∈ ∩{Uγ : γ ∈ Fq}, Xβq
⊂ ∪{V α : γ ∈ Fq} andFq 6= Fr if q 6= r. By

avoiding someq′s and relabelling, we may and do assume thatβ1 ≤ β2 ≤ . . . ≤ βq ≤ . . ..
Since#Fq ≤ n, q = 1, 2, . . . and all of them are different, it is possible to assume that

{Fq; q = 1, 2, . . . } forms a∆−system with rootR maybe empty. In any caseR 6= F1

and there isy ∈ Xβ1
\ ∪{V γ ; γ ∈ R}. Then for eachq there existsδ(q) ∈ Fq \ R with

y ∈ V δ(q). But then we have

(x, y) ∈ ∩∞
q=1Uδ(q) × Vδ(q)

and{δ(q); q = 1, 2, . . . } ⊂ AK which contradicts the fact that{Uγ × Vγ ; γ ∈ AK} is
point finite since all{δ(q); q = 1, 2, . . . } are different elements inAK . Thus we see that
⋃

{Uα;α < µ} can be written as
⋃

{{UK
α,n;α < µ};K ∈ K(M), n ∈ N}

and we see that it is aΣ-point finite family of openFσ sets inX which is alsoT0-
separating. To finish the proof it is enough to apply Theorem 3(see Remarks 2 and 4)
to conclude thatX is a Gul’ko compact indeed. �

Remark 5. As we mentioned in the introduction, Gruenhage[23, Remark 2]asks if for a
Corson compactK, the condition ofK2 being hereditarily weakly submetacompact char-
acterizes Gul’ko compacta. The answer in no. An example constructed in[3, Theorem 3.3]
gives us a Corson compact spaceΩ which is not Gul’ko compact but it is a Gruenhage
space. Moreover, we have proved in[36] that this compact spaceΩ admits aσ-relatively
discrete network, i.e. a networkN which can be writtenN = ∪{Nn : n ∈ N} such that
for eachn ∈ N the familyNn is discrete in∪Nn. Since a space that admits such a network
must be hereditarily weakly submetacompact[27], the exampleΩ provides the answer to
Gruenhage’s question. The spaceΩ is also studied in[15, Theorem 7.3.2].

5. TALAGRAND COMPACT SPACES

There is an analogue of Theorem 9 for Talagrand compact spaces. Of course our pre-
vious statements can be adapted to give the proof for that case. The essential change is
that the separable metric spaceM will be now complete too; so a continuous image of the
Baire spaceNN where we have the fundamental system of compact subsets given by:

{Aα := {β ∈ N
N : β(n) ≤ α(n), n = 1, 2, . . .} for α ∈ N

N}

So we shall work with the Baire spaceN
N and with the order relation

α ≤ β if, and only if α(n) ≤ β(n), n = 1, 2, . . . for α, β ∈ N
N

instead of the lattice of compact subsetsK(NN).
We shall begin withNN-point finite families (see Definition 3), then we have the follow-

ing result.

Proposition 10. A collectionW of subsets of a given setX is N
N-point finite if, and only

if, we have subfamiliesWα of W for everyα ∈ N
N such that

(i) W = ∪{Wα : α ∈ N
N};

(ii) Wα ⊂ Wβ wheneverα ≤ β in N
N;

(iii) Wα is a point finite family inX for everyα ∈ N
N.
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For an indexed familyA = {Ai : i ∈ I}, A is index-NN-point finite if, and only if,
I =

⋃

{Iα : α ∈ N
N} with Aα := {Ai : i ∈ Iα} an indexed subfamily ofAβ :=

{Ai : i ∈ Iβ} wheneverα ≤ β in N
N, and for everyα ∈ N

N andx ∈ X we have
#{i ∈ Iα : x ∈ Ai} < ω.

Let us remark that everyσ-point finite family isN
N-point finite too because the union of

a finite collection of point finite families is point finite too. The following is the analogue
to Theorem 1 and describes the combinatorial structure here:

Theorem 11. For a familyW of subsets of a given setX the following conditions are
equivalent:

(i) W is N
N-point finite;

(ii) W is M -point finite for some Polish spaceM ;
(iii) W =

⋃∞
n=1 Wn and forn1, n2, . . . , nk, k ∈ N,

Wn1,...,nk
=

∞
⋃

m=1

Wn1,n2,...,nk,m

such that for everyα = (an) ∈ N
N and for everyx ∈ X there is an integer

n0 := n(α, x) such thatord(x,Wα|n0
) < ω.

Proof. (ii) ⇒ (iii) There is a continuous onto mapϕ : N
N → (K(M), dH), because

(K(M), dH) is complete too. If we set, forn1, n2, . . . , nk, k ∈ N

Wn1,...,nk
:= {W ∈ W : W ∈ Wϕ(α) with α ∈ N

N, α|k = (n1, . . . , nk)}

then we have a web of subfamilies

W =

∞
⋃

n=1

Wn and Wn1,...,nk
=

∞
⋃

m=1

Wn1,...,nk,m

which verifies (iii) after our claim in Theorem 1 for the proofof (ii) ⇒ (i).
(iii) ⇒ (i) Givenα = (an) ∈ N

N we set

Dα := {W ∈ W : W ∈ Wa1,a2,...,an
, n = 1, 2, . . .},

and we have, by the web conditions in (iii) thatW =
⋃

{Dα : α ∈ N
N}.

Let us takeWα :=
⋃

{Dβ : β ≤ α} and we obviously have (i) and (ii) in Proposition
10. Moreover, for everyx ∈ X we haveord(x,Wα) < ω. If this is not true, we will have
a sequence of elements{Wn} in Wα with Wn 6= Wm for n 6= m andx ∈ ∩∞

n=1Wn. For
every integern there isβn ≤ α such thatWn ∈ Dβn

and we may and do assume that
(βn) converges to someβ ≤ α in N

N. Then, for everyp ∈ N, we haveβn|p = β|p for n
large enough, and soWn ∈ Wβ|p for n large enough, andord(x,Wβ|p) = ω too. This is
a contradiction with (iii) which finishes the proof. �

Remark 6 (Index-NN-point finite families). Of course we also have the version of Theorem
11 for index-NN-point finite familiesA = {Ai : i ∈ I}. In this case, (iii) reads as follows:

There is a web{In1,...,nk
: (n1, . . . , nk) ∈ N

k, k = 1, 2, . . .} of subsets ofI; i.e.
I = ∪∞

n=1In and forn1, n2, . . . , nk, k ∈ N we have

In1,...,nk
= ∪∞

m=1In1,n2,...,nk,m

such that for everyα = (an) ∈ N
N and for everyx ∈ X there is an integern0 := n(α, x)

such that
#{i ∈ Ia1,a2,...,an0

: x ∈ Ai} < ω.

For the proof we use the same arguments as above, using Lemma 1instead of the claim in
(ii) ⇒ (i), Theorem 1.

The covering property in that case is the following:
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Definition 7. A topological space(X, τ) is N
N-metacompact if for every open coverU in

X we have an open refinementV which isN
N-point finite inX.

Of course we have:

σ-metacompact⇒ N
N-metacompact⇒ weaklyσ-metacompact

⇒ metalindel̈of (*).

and the arrows can not be reversed at all. Indeed, after the characterizations in [20] and our
theorems 9 and 16, the examples of compact subsets distinguishing in the relations

Eberlein compact⇒ Talagrand compact⇒ Gul’ko compact

⇒ Corson compact

provide us with examples to distinguish between the covering properties in (*).
For expandability we now need the following:

Definition 8. LetA be a family of subsets of a topological space(X, τ). We shall say that
A is N

N-point-finitely expandable whenA can be indexed asA = {Ai : i ∈ I} and for
everyi ∈ I there exists an open setGi ⊃ Ai in X such that the indexed family{Gi : i ∈ I}
in index-NN-point finite.

Now we have

Theorem 12. Let (X, τ) be aK-analytic topological space. Then the space(c1(X), τp)
has aN

N-point-finitely expandable network.

Proof. As in the proof of Theorem 4, but now we haveX = ∪{Xα : α ∈ N
N} whereXα

is a compact subset ofX andXα ⊂ Xβ wheneverα ≤ β ∈ N
N, . �

Of course we also have the result corresponding to proposition 5;

Proposition 13. Let (X, τ) be a topological space with aNN-point-finitely expandable
network. ThenX is hereditarilyN

N-metacompact.

Proof. It follows the arguments of Proposition 5. Now we use the web characterization
(iii) in Theorem 11 and the Remark 6, instead of the weaklyσ-point finite characterization
for the open expansion{Gi : i ∈ I} of the networkN . �

Consequently we have:

Corollary 14. For everyK-analytic topological spaceX, (c1(X), τp) is hereditarilyN
N-

metacompact and, in particular, hereditarily submetacompact.

Corollary 15. Every Talagrand compact space has aN
N-point-finitely expandable net-

work and it is hereditarilyNN-metacompact too.

The proof of Proposition 8 can be also adapted toN
N-metacompact spaces. Then we

have all the ingredients for the proof of:

Theorem 16. The following are equivalent for a compact spaceX.

(i) X is Talagrand compact;
(ii) X2 \ ∆ is N

N-metacompact;
(iii) X2 is hereditarilyN

N-metacompact;
(iv) X admits aN

N-point-finitely expandable network.

Proof. It follows the scheme of the proof of Theorem 9 and it is used here the following
“Rosenthal-type” theorem for Talagrand compact spaces, that follows from Farmaki [18]:

�

Theorem 17. A compact spaceX is Talagrand compact if, and only if, there exists a
N

N-point finite familyA of openFσ-subsets ofX, whichT0-separates the points ofX.
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Proof. It follows from Farmaki’s Theorem because the extra assumption in [18] ofA being
point countable is not necessary, since everyN

N-point finite family is point countable by
Theorem 1. �

Problem 1. Find a network characterization for the class of Corson compact spaces. See
[13].

Acknowledgments. The authors wish to thank the referee for his suggestions andcom-
ments which helped a lot to improve the final presentation of the paper.
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