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ABSTRACT. In this paper we characterize the classes of Gul'ko andgTatel compact
spaces through a network condition leading us to answer testepns posed by G. Gru-
enhage, [23], on covering properties.
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1. INTRODUCTION

A compact spacdy is calledEberlein compactif it is homeomorphic to a weakly
compact subset of a Banach space and it has a strong influenbetio the geometry
and topology of the Banach space it generates. Since thengkpaper by Amir and
Lindenstrauss [1], where they showed the interplay betwepaological and geometrical
properties of the so-called weakly compactly generatecaBlarspaces, a lot of research
has been done on this class of Banach spaces and theireslstizh as weakly K-analytic,
weakly countably determined and weakly Lingietletermined Banach spaces [42, 45, 26,
3,38, 44, 39, 8, 16, 34, 35].

For a compact spacE we have that is Eberlein compact if, and only ity (K) is
weakly compactly generated [1k is said to beTalagrand compactwhen(C(K), 7,,) is
K-analytic [42], i.e. there exists an onto usco mapNY — 2(C(K).7): and K is said to
beGul'ko compact if (C(K),7,) is K-countably determined [42, 45], i.e. there exists an
onto usco mag : ¥ ¢ NN — 2(¢(K).7)  Main results are the fact thaf embeds in &-
product of real lines whenevéf is Gul’ko compact [26] and thak” embeds if(¢cy(T"), 7,,)
wheneverkK is an Eberlein compact space [1]. Compact spaces lyidgpnoducts of real
lines are calledCorson compactspaces [10, 25, 5, 20]. We denote fythe pointwise
convergence topology on spaces of functions.

For an up-to-date account of these classes of compact spaacssll as their interplay in
Functional Analysis, we recommend the books [6, 15, 17]ttegyewith the survey papers
[33, 30, 19], as well as some very recent papers [13, 2, 16\¥g.have the following
implications:

Eberlein compact=- Talagrand compact> Gul’ko compact

= Corson compact

and no arrow can be reversed, [15, 42, 5, 43].

Given a setd we shall denote byt A its cardinality and for a given family of subsets
A of a setX, givenxz € X we shall denote byrd(z, A) = #{A € A:z € A}. We
say that the family4 is point finite (resp. point countablg if for every z € X we have
ord(z, A) < w (resp.ord(z, A) = w), wherew is the cardinality of the set of the positive
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integersN. A is saido-point finiteif A = (J{.A, : n € N} such that each family,, is
point finite.

Let us recall that a topological spat&, ) is metalindedf (resp. o-metacompagtif
every open cover o has a point countable (resp:-point finite) open refinement. A
coverd of X is aweakf-coverif U = (J{U,, : n € w} such that ifx € X, then
0 < ord(z,U,) < wfor somen € w. X is weakly submetacompai€every open cover of
X has an open refinement which is a wéakover (also calledveaklyf-refinablespaces
[7] ando-relatively metacompagi.2]).

Gruenhage [20] characterized Corson (resp. Eberlein) aotapas those compact
spaces such that2 is hereditarily metalindéf (resp.c-metacompact), or equivalently,
such thati? \ A is metalindedf (resp.c-metacompact), wherd = {(z,z) € K : x €
K} is the diagonal. There are Corson compact spaces which ateregitarily weakly
submetacompact [22]. Nevertheless every Gul'’ko compaatesiis hereditarily weakly
submetacompact, even more they are weakiyietacompact according to [23], where the
following definition is introduced. In order to stress théatience between these concepts
we refer to [7, 23]

Definition 1. A topological spacéX, 7) is weaklyo-metacompact if for every open cover
U in X we have an open refinemaénasuch thaty = J{V,, : n € w} and for everyr € X
we have

V= U{Vn sord(z, V) < wh.

The paper of Gruenhage [23] had a strong influence in Furati@nalysis since it
was the inspiration for proving fragmentability propestief Gul’ko compact spaces and
consequently that weakly countably determined Banachespaie weak Asplund spaces
[15].

In view of the results mentioned above it is natural the ocioje posed by Gruenhage
that the conditior is compact and<? is hereditarily weaklyr-metacompact would char-
acterize Gul'’ko compact spaces (see [23, remark 2]). Oun nesgults in this paper provide
a positive answer for this conjecture (see Theorema 9).drcdlurse of the proof we shall
present a characterization of Gul’ko compact spaces ingefmetworks, providing more
information on the relationship between Gul’ko compacicggseand compact spaces with
thelinking separability propertyas it is presented by Dow, Junnila and Pelant [13]. In par-
ticular, the network obtained in any Gul’ko compact spadeldg its hereditarily weakly
o-metacompactness. Let us recall that fragmentabilityttegyewith hereditarily weakly
submetacompactness imply to be descriptive in the sensamséll, [27], a property sat-
isfied by all Gul'’ko compact spaces, [36], which has beconrg iraportant in the study
of LUR renorming, [31].

Recall that a family\/ of sets in a topological spade, 7) is said to be aetworkfor
the topology if for every open sé&t c X and any point: € U there isN € N such that
re NCU.

Gruenhage also asked (see [23, Remark 2]) if the weakertoomtthat X' Corson com-
pact andK? hereditarily weakly submetacompact characterizes Guttkmpact spaces.
In this case the answer is negative due to a previous exarhpliggros and Mercourakis
[3] which we have discussed in [36], (see Remark 5). An exarnpkh compact spack
such thatk? is hereditarily weakly submetacompact and not Corson cetmpad sak?
is not hereditarily metalindéf, was already given in [23, Remark 2].

All our topological spaces are assumed to be Hausdorff ancefee the reader to [14,
15] for general background and for definitions of terms amicepts used below without
any explanation.



2. ON WEAKLY o-POINT FINITE FAMILIES

The combinatorial decomposition for weaktymetacompactness can be presented with
the following definition, which has been used by Sokolov it][# order to give char-
acterizations of Gul’ko compact spaces in the spirit of Rtisa&l’'s theorem for Eberlein
compact spaces [40]:

Definition 2. A collectioni/ of subsets of a given s&t is said to be weakly-point finite
ifid =u{l, :n=1,2,...} sothat, for eachr € X we have

U= U{US sord(z,Us) < w}.

In our approach to prove Gruenhage’s conjecture we shadl teend handy conditions
characterizing weakly-point finite families in a given seX. It is our intention to present
in this section some characterizations based on the latticeture of the se’(M) :=
{K C M : K is compac}, whereM is a separable metric space. Let us begin with the
following notion:

Definition 3. Given a separable metric spadé and a family)V of subsets of a given set
X, we say thatV is M-point finite if for every compact subsé&t € (M) we have a
subfamilyWWg of W such that
) W=U{Wk: K e K(M)};
(i) Wk, C Wk, wheneverk; C Ks in K(M);
(iii) Wk is a point finite family inX for everyK € K(M).

Remark 1. It is enough to ask (i), (ii) and (iii) in Definition 3 for compasetsK in a
fundamental system of compact subset&/odnly. Indeed, letS C (M) such that each
compact set i/ is included into an element &f. LetWWs be defined for every € S and
let (i)-(iii) above hold ifC(M) is replaced byS. For K € K(M) put Wk := (J{Ws :
S D K, S € S}. Then (i)-(iii) are satisfied.

Another way of describing weakly-point finite families in a given seX is with the
concept ofweb[37], which allows us to see the combinatorial structure ey o-point
finite families in a way similar to a Souslin scheme [28].

Forx ¢ NN and a family of subsets o we assume it is possible to assign to each
a € ¥ a subfamilyw,, ¢ W such thatV = (J{W,, : « € Z}. Forg = (bs) € N¥ and
n € N we denote by3|n the finite sequencéy, bs, ..., b,). If (a1,a2,...,a,) is afinite
sequence of positive integers, then we write

Wai as,....an = U{Wﬁ : 0 e X, Bn=(ar,a9,...,a,)}

(it could be empty when there is nibin X with gln = (a1, as, ..., a,)) and we have a
‘web of subfamilies’: i.e.

oo
W= {J Wi i Warmaomy, =

n=1

for everyny,no,...,ny € Nandk € N.

Wn1 sN2,5.. N,
1

S e

Definition 4. We say that a familyV of subsets ok is web-point finite if there i& ¢ NN
and a web of subfamilies as above, so that for every ¥ and for everyr € X there is
an integerng := n(a, x) such that

ord(z, Wyn,) < w
The following results collects the characterizations welaoking for:

Theorem 1. For a nonempty seX and a familyWV of subsets on it, the following are
equivalent:

(i) W is weaklyo-point finite,



(i) W is M-point finite for a suitable separable metric spade, d),
(iiiy W is X-point finite for a suitableZ c {0, 1}V,

(iv) W is ¥-point finite for a suitables ¢ NN,

(v) W is web-point finite.

Proof. (ii) = (i) Let us considerly; the Hausdorff distance ofi(M), i.e.
dp (A, B) :=sup{d(a, B),d(A,b) :a € A,b € B}

and we havé/C(M),dy) is a separable metric space too. Then, we claim that for every
K € K(M) and everyr € X there exists a neighbourhoddof K in (K(M),dy) such
that

ord(x,U{Wg 1S eV} <w.

Indeed, if this is not the case for some= X andK € K(M), we could findiV; such that
ze Wy e J{Ws: S € By, (K, 1)}

Now, assume the selgy, . .., W,, are already defined for somec N. We can findiV,, ;1
such that

2 € Wapr € J{Ws 1 8 € Bay (K, 20\ AW, Wa, ... W, )

Now, forn € Nfind K,, € Bq,, (K, 1) sothatiV,, € Wk, and putk o, := KUK UK,U
... This is an element of (M) and soord(z, Wk__) is finite, which is a contradiction,
sincex € W,, € Wy__ for everyn € N.

Let us now fix a countable bas&for the spacé/C(M), dy ) and define

W(B) := | J{Wk : K € B}

for every B € B. We will haveW = |J{W(B) : B € B} and for everyz € X,
W = U{W(B) : ord(z, W(B)) < w, B € B}. Indeed, for everys’ € (M) our claim
above provides us with an eleménte B such thatk’ € V andord(z, W(V)) < w.

(i) = (iii) Since W is weakly o-point finite there are countably many subfamilies of
W such thatv = J{W,, : n = 1,2,...} with the property that for every € X the
following holds

W= LJ{V\/é sord(z, Ws) < w} (%)
For everyl € W let us consider the eleme®(V') € {0, 1}" defined by

P = {12

and let us calt> := {P € {0,1}" : P = P(V) for someV € W}. Let us note that for
everyP € ¥ the familyWp := {V € W : P(V) = P} is a point finite family inX. In-
deed, giverP € ¥ andz € X suppose#{V € Wp : x € V} = w. Enumerate these sets
as{V,}°2, and let{s,, }>°_, be a sequence of positive integers suchdhédtx, W,) < w

if and only if ¢ € {s,,}. Hence, for every fixed € N we haveV,, ¢ W,, for all large

n € N, and soP(s;) = P(V,,)(s;) = 0. ThusP(s;) = 0 for all i € N, and therefore
P(V,)(si) = 0,i.e.,V, ¢ W;, forall n,i € N. However, a3V = [ J{W;, : ¢« € N} by
(*), we have a contradiction.

In fact, this argument can be extended to show that for evempactx c = c {0, 1}
the family Wy := {V € W : P(V) € K} is point finite inX. Indeed, given: € X
and K C X compact, let{sq, s2,...,8pn,...} = {s € N:ord(z, Ws) < w}. If #{V €
Wk : « € V'} were infinite, put them into a sequengg, }. SinceK is compact we may
assumeP(V,,) converges to somE(V) € K, with vV € W. Now for everyj € N, only
finitely many members ofV,, : n = 1,2,...} can be inW,,, so P(V,,)(s;) = 0 forn
large enough. Thu®(V)(s;) = 0 for all j € N, and this mean¥” ¢ W = (J{W;, : j =
1,2,...} which is a contradiction. '

(iii) = (iv) = (ii) are obvious.
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(ii) = (v) Since(K(M),dg) is a separable metric space, there is a subisetN" and
acontinuous onto map : ¥ — (K(M),dg). If we simply define
Wa 1= We(a)

we obtain the web-point finite decomposition of Definitionechuse of our claim in the
proof (ii) = (i) above, together with the continuity ¢f.

(V) = (i) The web{Wh, ns....ns, : M1, 02,...,n; € N} is a countable family of sub-
families of YW which satisfies Definition 2, since for everye X anda € X there isng
such thabrd(z, Wan,) < w. O

For the corresponding covering property of Gruenhage we hav

Corollary 2. A topological spac€X, ) is weaklyo-metacompact if, and only if, every
open cover has an -point finite open refinement for some separable metric spéce

It is a simple consequence of Definition 2 that every weaklyoint finite family of
subsets of a given séf is point countable. For this reason, the theorem by Merdasira
[29, Theorem 3.3] giving a Rosenthal’s type characterrafor Gul'’ko compact spaces
reads now as follows:

Theorem 3. For a compact spac& the following are equivalent:

(i) K is a Gul'ko compact space,

(ii) there is a separable metric spadé together with an)/-point finite familyF of
openF,-sets inK which isTy-separating, i.e. such that for everyandy in K,
x # y, thereisA € F such that# AN {z,y} = 1.

Proof. After Theorem 1 it is reduced to Mercourakis’ Theorem 3.328][ d

Remark 2. Sokolov’s characterizatiof#1] says thati is a Gul’ko compact space if, and
only if, K has a weaklyr-point finite 7Ty-separating family of opeff,-sets. Our Theorem
1 shows that both Sokolov’'s and Mercourakis’ Theorems ari&adt, the same result. (See
footnote 1 in Gruenhage’s papf23]). The notion of:-point finite family appears for the
first time in Mercourakis’ Theorem 3.3 [29]. The study of<-analytic andK -countably
determined spaces using the lattice structuréCo)/ ) began with M. Talagranf42], see
also[9].

Remark 3 (IndexX-point finite families) Given an indexed family of subsets of a given
setX, A = {4, :i € I}, andz € X we may consider the “index-order” of the point in
the family, i.e#{i € I : z € A;} instead oft{A € A: z € A}.

For instance, we shall say that the indexed famdly= {A; : i € I} is index-weakly
o-point finite if I = (J{I,, : n = 1,2,...} in such a way that for each € X we have

I=|J{lo:#liel iz e A} <w}

For two familiesA = {A; : i € I} andB = {B, : j € J} we say that4 is an indexed
subfamily of53 if there is a one-to-one ma: I — J such thatd; = B ;) forall i € I.
Given a separable metric spadé¢ and an indexed familyl = {4; : i € I} of a given
setX, we shall say tha#d is index-M-point finite if for every compact subgéte (M)
we have a subsét; C I such that if we denote i := {A; : i € Ik}
() I=U{Ix: KeK(M)},
(i) Ag, is an indexed subfamily of i, wheneverk; C Ky in (M),
(i) Foreveryz e X andK € K(M) #{icIx:x € A;} <w.
Of course, Theorem 1 remains true for these notions. In @algr, a family A = {A; :
1 € I} is index-weakly-point finite if, and only if,4 is index-M-point finite for a suit-
able separable metric spadd. We shall use later these facts. A proof follows the same
arguments used in Theorem 1 with a bit of extra care. For imstawe need the following:
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Lemma 1. Let A = {A; : i € I} be an index-M-point finite family of subsets of a given
setX. Then for everyr € X and K € K(M) there is a neighbourhoo® of K in
(K(M),dg) such that

#{iGU{IS:SGV}:xGAi}<w

Proof. If this is not the case, we choose, for every positive integer

‘ ‘ 1
{iv,....iny < | {Is 1 du (S, K) < o

withz € Ajn for j =1,2,... nandi} # 4 if j # k. If i € ST withdp (S}, K) < =,
j=1,2,...,nwe shall consider the sequence
{S},82,82 ..., 8%, Sy, ..., 8" .. .} inK(M)
which converges td(, so
Ko :=SuS?uUS2uU...uS'U...US"U...UK

is a compact subset off with Koo D S} forn=1,2,...,7=1,2,...,n, andAS;L is an
indexed subfamily ofdx__ forn=1,2,...,5=1,...,n. '

Thus{if,i%,...,i3} C Is» corresponds with a set efdifferent points{(i7™", i;™", . ..
2"} inthe index sefx_ withz € A;~n, j =1,2,...,n, for everyn € N, which is a
contradiction with the fact that

#{iGIKOOSICEAi}<w
O

Once we have this Lemma, the proof of Theorem 1 for indexdtigafiollows the same

pattern. Let us show, for example, that an index-weakpoint finite familyA = {A; :
i € I} must be indexs-point finite for a suitables c {0,1}". By assumption we have
I =J{I, : n € N} sothat, foreachr € X,we havel = J{I;: #{iel,:x € A;} <
w}. For everyi € I we considerP(i) € {0, 1}" defined by
. 0ifi¢ I,
P(i)(n) = { 1if 4 i I,
andX := {P € {0,1} : P = P(i) for somei € I'}. Then fork compact subset af, we
setlx :={i € I : P(i) € K} and we have:

() I =U{Ix: K € K(X)} since, forevery € I, P(i) € X.

(i) Ix, C Ik, wheneverk; C K, are compact subsets &f.

(i) Forevery K € K(X) andz € X we have#{i € Ix : x € A;} < w. If not,
we would have a sequenég, } with P(i,,) € K andz € A; forn =1,2,... SinceK
is compact we may and do assume th&{i,) : n = 1,2,...} converges taP(i) € K
for somei € I. Sincex € A;,, n = 1,2,... we havei ¢ I, for any s such that
#{iel;:xz € A;} <w. Butthis contradictd = | J{I, : #{i € I, : © € A;} <w} and
the proof is over.

3. NETWORKS FORcq (X))

Following Mercourakis [29] we shall work with the space
a(X):={fel>*(X):Ve>0theset{t € X : |f(t)] > e} is closed
and discrete inX },

for a given topological spac&’, and we shall consider it as a Banach space endowed
with the supremum norm, i.e. a closed subspacé&ufX). For everyf € ¢;(X) and
every compact subséf of X we havef|, € cyo(K) because a closed and discrete subset
of a compact space must be finite. So wh€ris a compact space, we havg X) =
¢o(X). The important case for us is wheéf is K-countably determined. Indeed, a main
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result of Mercourakis [29] is the fact that a compact spdcis a Gul’ko compact if, and
only if, X embeds in a spacg (Y'), with the pointwise convergence topology, for some
K-countably determined spadé. Our main objective here is to show the existence of
suitable networks in spacés; (Y'), 7,,), for K-countably determined spac¥s which will
characterize Gul'’ko compact spaces in section 4.

Networks were introduced by Arkangel'skii in 1958 and thaydébeen very useful since
then. They have become a prominent tool in renorming thefbey the seminal paper of
Hansell, [27], who showed that different kind of networksBanach spaces are related
to fragmentability properties, [31]. THanking separability propertyLSP, for short), is
another tool we have used to connect networks for differegtrimspaces [34, 35, 32].
Dow, Junnila and Pelant have characterized quite recgh8Yythe LSP in terms of a net-
work condition too. For compact spaces, this conditiondiegtly between being Gul'’ko
compact and Corson compact, [13]. Itis a natural questidmscontext to look for a suit-
able network characterization of Eberlein, Talagrand,k&und Corson compact spaces.
Eberlein compacta are characterized in [13] too. We wilsprg here characterizations for
Talagrand and Gul’ko compacta. In order to deal with the LB&the Eberlein compact
case, the following notion becomes essential, as it is shoji8].

Definition 5. A family £ of subsets of a topological spat¥, 7) is said to be point-finitely
(resp. point-countably) expandable if there exists a familopen set$G;, : L € L} such
that L C Gy, for everyL € £ and, for everyr € X, the family{L € L : z € G} is finite
(resp. countable). The familg is said to bes-point-finitely expandable if we can write
L ={L, : n € N} so that each family,, is point-finitely expandable.

Dow, Junnila and Pelant characterize the LSP in a topolbgjgace by the existence
of aco-disjoint and point-countably expandable network. Thegvsthat a compact space
is an Eberlein compact if, and only if, it hassapoint-finitely expandable network. This
fact, together with Gruenhage’s characterization of Edeitompact spaces as those com-
pacta whose complement of the diagonal is-aetacompact space, [20], gives the proof.
Indeed, if one has a-point-finitely expandable network in a topological spaceit fol-
lows thatX is hereditarilyc-metacompact, [13]. Our aim is to follow the same ideas for
Gul'ko compact spaces. We construct the appropiate expéadatwork in(ci(Y), 7,)
which will give us the hereditarily weakly-metacompactness property thanks to our re-
sults from section 2.

After our study ofX-point finite families in section 2 we introduce now the feling
definition (see Remark 3).

Definition 6. Let .4 be a family of sets in a topological spa¢&, 7). A is said to be
Y -point-finitely expandable il can be indexed agl = {A; : i € I} and for everyi € I
there exists an open sét; O A; in X such that the indexed familyG; : i € I} is index-
Y-point finite; i.e. for a suitable separable metric spadewe have, for everk’ € (M),
subsetd i C I such that:

() I=U{Ix:KeK(M)},

(i) {G; :1i € Ik, }isanindexed subfamily ¢iG; : ¢ € Ik, } whenevetk; C K»in

K(M),
(iii) Foreveryr € X andK € K(M) we have

#liclg:2€G} <w
Now we can formulate our main result in this section:

Theorem 4. Let(X, 7) be aK -countably determined topological space. Tlen(X), 7,,)
has a>-point-finitely expandable network.

Proof. Let us begin with the particular case @K, 7) being a compact space. Then
c1(X) = ¢o(X) and we follow Hansell's construction in [27, Theorem 7.5ktlus be
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precise with all the details since we shall need all of thenttfe proof of the non-compact
case. A close construction is the one presented in [13].

Let us fixI = {I,,;n = 1,2,...} a countable basis for the topology Bf\ {0} made
of bounded open intervals such that for eacthere is are > 0 such that either,, C
(—o0,—¢) or I, C (e,+00). Letus fix an integen € N and the first» elements from
Li e I, :={I,...,I,}. We shall consider maps : A — I, whereA C X, i.

e. we choose "doors” frori, for every pointz € A, and we need only finite sets, i. e.
#A < 400, to describe the topology,. So let us consider, for fixed € N,

My ={(A,p);AC X, #A <nandyp: A —1,}
and define foA, ¢) € M,, ther,—open set

plx) ifzel,
R(A, ) :=co(X)N R, whereR, = .
(A.) co(X) }g{ {R otherwise.
Moreover, form € N let us define
o(x) if v €A,
R (A, ) :=co(X) N R, whereR, = .
(8, 9) := co(X) zg( {(—l/m, 1/m) otherwise

and we have
R (A, ) C R(A, @)
and the family
Ry = {R(A’ QD); (AvQD) € Mn}
consists ofr,—open subsets ef,(X) and itis a point finite family irey (X) for every fixed
n € N. Indeed, giverf € ¢y(X) such thatf € R(Ay,, om) With {(Ap, om) : m € N}
an infinite set inM,,, then{J{A,, : m € N} must be infinite too, since each,, takes
values in the finite sdt= {I, ..., I,,} andn is fixed. Hence, for some infinite st C X
and for somd;, 1 < j < n, we havef(y) € I, for ally € Y, but this contradicts the fact
that f € ¢o(X) sincel; is bounded away from zero.
We set form,n € N

R = {Rm(A, 0); (A, 0) € My}
and we have that2®, R, , is an open basis of th@g - || -topology ince(X) and

m,n=1
each familyR,, ,, is expandable to the famil,, which is formed byr,—open sets and
it is a point finite family incy(X). Indeed, iff € ¢o(X) andm is a positive integer, if

[flle < L, letA = 0, otherwise let

A:{$17$2,...75Ek}:{$€X1|f(;1’,‘)|2%}

and choosd,,, € Ifori =1,2,...,k, such that
1 1
fxi) € In, C (f(24) — EJC(%) + E)
Letn = max{k,n1,n2,...,n,} and definep : A — {1, I»,..., I,} sothatp(x;) = I,
fori =1,2,...,k Then(A, ) € M,, and

1
f€Rn(A ) C By (f, E)'

So we have ar-point-finitely expandable network ife, (X) = ¢o(X),7,) whenX is a
compact space.

Let us show the case whéiX, 7) is K-countably determined. So we will have a sepa-
rable metric spacé/ such thatX = U{Xk; K € (M)} whereX g are compact subsets
of X and Xk, C Xk, wheneverK; C K, in (M), [9]. If we make the construction we
have done in the compact case for evBhe K(M); i. e. on everyy (X k), then we shall
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arrive to ax-point-finitely expandable network ifz; (X), 7,,). Let us be more precise and
for every fixed integen and every fixed< € (M) we shall consider:

M, K) :={(A,p); A C Xg;#A <nandp: A —1,}

and we write, as before,

p(z) ifxzeA,
R(A, ) :=c1(X)N R, whereR, = .
(A, ) = er(X) zg( {IR{ otherwise.
and
o(z) if x € A,
Rm(A, ¢, K) :=c1(X) N [] RowhereR, = (=1, 1) ifze X \A,
weX R ifz & Xxk.
and we have

R (A, ¢, K) C R(A, ¢)
and the family
R(n, K) := {R(A, ¢); (A, ¢) € M(n, K)}
is made ofr,,—open subsets af (X) and it is a point finite family ire; (X) for every fixed
n € NandK fixed. Indeed, everyt € ¢, (X) verifiesh|x, € co(Xk) and therefore
#{(A,p) € M(n,K);h € R(A, )} < 00

as we have already seen in the compact case.
To describe the network we are looking for we take

N :={R,(A,p,K): (A, p) € M(n,K),m,n € NandK € K(M)}
N is a network for the pointwise topology in (X) since{R,,(A, ¢, K) : n,m € N}
provides a basis for the topology of uniform convergencehersetX i, as in the compact
case. ThugV is a basis for the topology of uniform convergence on the §&tg : K €
K (M)}, a topology finer that,, since every finite seF’ of X is contained in some x

with K € K(M). It remains to show thal/ is 3-point-finitely expandable. Our set of
indexes to descrih4/ is:

I={(mn,K,AN¢):(Ap) e Mn,K),mneN KeK(M)}
and we set foi = (m, n, K, A, ¢) € I ther,-open set
G, :=R(A,9) D Rn(A,p, K) = N;

Let us consider the metric spabex M whereN is endowed with the discrete topology.
Let us denote byr; : N x M — Nandr, : N x M — M the canonical projections. For
a compact subsét of N x M we set

IS = {(m7n’ K7A7 (p) : (A’ 99) 6 M(n’K)’m’n e {1727 A 7Q}}

whereq = max 7 (S) and K = ma(S5).

We can write

() I =U{ls : S € KN x M)}. Of course we hav¢G, : i € Ig, } is an indexed
subfamily of{G; : i € Ig, } wheneverS; C S, becauseM (n, m2(S1)) C M(n,m2(S2))
foreveryn =1,2,....

(iii) If ¢ = maxm(S) andK = w2 (S) for the compact subsétof N x M, we have

#{(manaK7A790) =i€lg: f €G; = R(AaW)}

<> g (#{(Ap) e M(n,K): f € R(A9)}) <w

n=1

becaus&k(n, K') was a point finite family irc; (X)) and the proof is over. O

For the corresponding covering property we have:
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Proposition 5. Let (X, 7) be a topological space with B-point finitely expandable net-
work. ThenX is hereditarily weakly-metacompact.

Proof. The hereditarily weakly-metacompactness will follow if we can find, for every
arbitrary family)’ of open subsets of, a weaklyo-point finite open refinement af. So,
let us fixV andQ) := UV. Let N = {N; : i € I} be theX-point-finitely expandable
network for(X, 7); i.e. for a suitable separable metric spdceve havelx C I for every
K € K(M) and open set&; D N, for everyi € I such that{G; : i € I} satisfies
conditions (i) to (iii) in Definition 6. Giverx € 2 we can find; € I with

reN;, CVeVy

by definition of network.

SetJ := {i € I : N, C V forsomeV € V} and choose, for every € .J, an open set
V(j) € Y with N; C V(). Now we can define the open refinementolby

W:={G;NV():jeJ}
with UW = Q. Moreover, sincg€G; : i € I} is an indexX-point finite family we know
that! = UI,, and for everyr € X we also have
I=U{I:#{iel:z € G} <w},
(see Remark 3). Of course, if we denote hy := J N I, we haveJ = U{J, : n =
1,2,...} and for everyr € X
J=WJs:#{jedJs:z e GNV(j)} <w}

since#{j e Js:x € G;NV(j)} <wwhenever{i € I, : z € G;,} <w. SOWisa
weakly o-point finite open refinement of. O

Corollary 6. For every K-countably determined topological spaég then the space
(c1(X), ) is hereditarily weakly-metacompact and, in particular, hereditarily submeta-
compact.

As a consequence we obtain now Theorem 2 in [23]:

Corollary 7. Every Gul'’ko compact space hagapoint-finitely expandable network and
it is hereditarily weaklyr-metacompact too.

Proof. It is a consequence of Mercourakis’ theorem ([29, Theoretl) 3aying that ev-
ery Gul'’ko compact space is homeomorphically embeddegti(Y’), 7,,) for some K-
countably determined spagetogether with theorem 4 and proposition 5. O

Remark 4. For ¥ ¢ NY andI any set, it is definefiL5, 11]
a(ExT):={fel®(ExT): figxr € co(K x T) foreveryK c K(X)}

It follows adding one pointo thatY x I' U {co} will be K-countably determined, s§29,

Definition 1.3] thenc; (X x T") can be seen as the subspaced® x I'U{co}) formed by

the functions vanishing at. Thus, for ¢ NN andT any set the spacg:; (X x I'), 7,)

has aX-point-finitely expandable network and it is hereditarilgakly o-metacompact
too.

4. COVERING PROPERTIES ONX2 \ A

Following Gruenhage and Michael [24] we say that an openrcGvef a topological
spaceg X, 7) can be shrunk if there exists an indexed closed cover

{Ag;G € G}

such thatd¢ C G for everyG € G.
We shall need the following result in the course of the prdafio theorem 9. The cases
of metalindedf or o-metacompact has been considered in [24], now we need tioéforo
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the weaklyo-metacompact case. Fortunately the same arguments aq s$a4vork this
time:

Proposition 8. Let (X, 7) be a weakly--metacompact, locally compact space, andiet
basis for(X, 7). ThenX has a subcove8’ C B such that the indexed famiyB; B € B’}
is an index>-point finite family inX.

Proof. Let G be an open cover ok by open sets with compact closures andidie an

M -point finite open refinement @ (corollary 2), for a suitable separable metric space
M. By [24, Theorem 1.1] the covéf can be shrunk to a closed covedy; V' € V}. If

V € V, thenAy is compact, so there is a finite familyy, C B such that3y, coversAy
and such thaB C V for every B € By. The collections’ = | J{By;V € V} is such
that{B; B € B’} is $-point finite. Indeed, sinc® es M-point finite, we know that for
every K € K(M), Vg is a point finite subfamily o, V = (J{Vk; K € K(M)} and
Vi, C Vi, wheneverK; C K». Let us define fols € (M)

B/K = U{Bv; Ve Vk}
then we have

B =U{By; K € K(M)}
andBy, C By, wheneverk; C K, in K(M). Moreover, for everyiX € K(M) we have
{B; B € Bl } is point finite becaus® is a point finite family and for every € Vi
only a finite number of elements ¢B; B € B/} has been considered, exactly the ones
in the family By . (]

Finally we are ready for the proof of our main result:

Theorem 9. The following are equivalent for a compact space
(i) X is Gul'’ko compact;
(i) X2\ A is weaklyo-metacompact;
(i) X2 is hereditarily weaklyr —metacompact;
(iv) X admits aX-point-finitely expandable network.

Proof. (i)=-(iv) It follows from Corollary 7.

(iv)=-(iii) Because the property of havingapoint-finitely expandable network is sta-
ble by finite products together with our Proposition 5.

(i) =(ii) It is trivial.

(ii)=(i) We shall follow the proof of [20, Theorem 2.2] adding thetails for our case
here. Indeed ifX? \ A is weaklyo-metacompact, then by the proof of Proposition 8 there
is a cover

P={U, xVy;ve€ A}
of X2\ A such that:
(a) U, andV, are openF, in X, (take the original cover in Proposition 8 with sets
U x V with U andV beingF,-sets).
(b) U, NV, =0,Yy € A.
(c) {U, x V,;~v € A} is an indexE-point finite family in X2 \ A.
(d) UxV e PimpliesV x U € P.
Now if dens X = pandX = {p,;a < u}, we set for eaclx <

Xo = {pg;ﬁ < a}
and
Uy = {NyerU,; F C Aand{V,;~ € F}is afinite minimal cover of{,, }.

Note thati/, coversX \ X,. Then the family| J{Us; 5 < u} is Tp-separating as in
[21, Theorem 2.2, Claim 2]. And moreove{Us; 5 < u} is a X-point finite family
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in X. Indeed, by (c) we know that there is a separable metric spacich thatd =
U{Ak; K € K(M)}, with {U, x Va;a € Ak} point finite for everyK € K(M) and
Ak, C Ak, wheneverK; C K, in (M) (that is the case in the proof of Proposition 8).
For K € K(M) andn € N fixed, let/, be all members af{, whose corresponding
index setF’ has cardinality< n, and it is contained it ;. Then| {UX, : a < p}isa
point finite family in X. Indeed, if there is: € X that belongs to infinitely many members
of Up<, Uk, then forq € N we find ordinalss, < p and setsF, C Ak such that
#F, <n,x € Uy :v € F}, Xg, CU{Va:v€F}andF, # F, if ¢ # r. By
avoiding some’s and relabelling, we may and do assume that g, < ... < g, <....
Since#F, <n,q=1,2,... and all of them are different, it is possible to assume that
{Fy;q = 1,2,...} forms aA—system with rootR maybe empty. In any case # Fi
and there iy € Xg, \ U{V ;v € R}. Then for eachy there existsi(q) € F, \ R with
y € Vs(q)- But then we have
(z,y) € NGZ1Us(g) X Vi(q)
and{6(q);q = 1,2,...} C A which contradicts the fact thd/, x V,;v € Ak} is
point finite since al{é(q); ¢ = 1,2, ...} are different elements id . Thus we see that
(UH{Ua; o < pu} can be written as

U, 0 < n}s K € K(M),n € N}

and we see that it is &-point finite family of openF, sets inX which is alsoT}-
separating. To finish the proof it is enough to apply Theore(aeg Remarks 2 and 4)
to conclude thaX is a Gul'’ko compact indeed. O

Remark 5. As we mentioned in the introduction, Gruenh§2®@, Remark 2Jasks if for a
Corson compacis, the condition ofk2 being hereditarily weakly submetacompact char-
acterizes Gul'’ko compacta. The answer in no. An exampletiearted in[3, Theorem 3.3]
gives us a Corson compact spa@ewhich is not Gul’ko compact but it is a Gruenhage
space. Moreover, we have proved®6] that this compact space admits ac-relatively
discrete network, i.e. a netwoy¥” which can be writtet\' = U{\,, : n € N} such that
for eachn € N the family\,, is discrete inUN,,. Since a space that admits such a network
must be hereditarily weakly submetacompaat], the examplé? provides the answer to
Gruenhage’s question. The spdeés also studied if15, Theorem 7.3.2]

5. TALAGRAND COMPACT SPACES

There is an analogue of Theorem 9 for Talagrand compact sp&fecourse our pre-
vious statements can be adapted to give the proof for that CHse essential change is
that the separable metric spakewill be now complete too; so a continuous image of the
Baire spac&" where we have the fundamental system of compact subsets lgjve

{Ay :={BeNY:3(n) <a(n),n=1,2,...} fora € NN}
So we shall work with the Baire spad&' and with the order relation
a < Bif,andonly if a(n) < B(n),n=1,2,... fora, f € NV

instead of the lattice of compact subsgigN"Y).
We shall begin witiNY-point finite families (see Definition 3), then we have thddat+
ing result.

Proposition 10. A collection)V of subsets of a given sét is N"-point finite if, and only
if, we have subfamiliesV,, of VW for everya € NN such that
i) W=U{W, :ac N},
(i) Wa C W5 whenever < 3in NY;
(i) W, is a point finite family inX for everya € NV,
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For an indexed familyd = {A; : i € I}, A is indexN"-point finite if, and only if,
I = U{l, : « € NN} with A, := {A4; : i € I,} an indexed subfamily ofd; :=
{A; 1 i € Iz} whenevera < 3in NY, and for everya € NN andx € X we have
#liel,:x e A} <w.

Let us remark that every-point finite family isN"-point finite too because the union of
a finite collection of point finite families is point finite tod he following is the analogue
to Theorem 1 and describes the combinatorial structure here

Theorem 11. For a family W of subsets of a given séf the following conditions are
equivalent:
(i) W is NN-point finite;
(i) Wis M-point finite for some Polish spadd’;
@iy W=U,—, W, and forni,na,...,ng, k €N,

e}
Wnl,“.,nk - I l Wnl,nz,...,nk,m

m=1

such that for everyx = (a,,) € NY and for everyr € X there is an integer
ng := n(a, z) such thabord(z, Wy, ) < w.

Proof. (i) = (iii) There is a continuous onto map : NN — (K(M),dy), because
(K(M),dg) is complete too. If we set, fory, na, ..., ng, k € N

,,,,, n =AW EW W € Wy Witha € NN,a|k =(n1,...,nx)}

then we have a web of subfamilies

W= JW. and Wa, o, = [J Waromiim
n=1 m=1
which verifies (iii) after our claim in Theorem 1 for the praaff(ii) = (i).
(iii) = (i) Givena = (a,,) € NN we set

D, = {W eEW:We Wal,ag,...,anan =12,.. '}a

and we have, by the web conditions in (iii) that = | J{D,, : o € N},

Let us takeW,, := |J{Ds : § < o} and we obviously have (i) and (ii) in Proposition
10. Moreover, for every € X we haveord(z, W,) < w. If this is not true, we will have
a sequence of elemen{®V,, } in W,, with W,, # W,, for n # m andx € N2, W,,. For
every integem there is, < «a such thatit,, € Dg, and we may and do assume that
(8,) converges to somé < « in NY. Then, for every € N, we have3,|p = §|p for n
large enough, and s&,, € W, for n large enough, andrd(x, Wg,,) = w too. This is
a contradiction with (iii) which finishes the proof. O

Remark 6 (IndexN"-point finite families) Of course we also have the version of Theorem
11 for indexN"-point finite familiesd = {4, : i € I}. In this case, (iii) reads as follows:

There is a web{l,,, ., : (n1,...,nx) € NF k = 1,2,...} of subsets of; i.e.
I =uU,1I, andforny,na,...,nk, k € Nwe have
Inl,...,nk = U?)f:llﬂ/1,7l27...,7lk7m

such that for everyr = (a,,) € N" and for everyr € X there is an integen := n(a, z)
such that

#{1 € Luya,an, T € A} <w.
For the proof we use the same arguments as above, using Lermstead of the claim in
(ii) = (i), Theorem 1.

The covering property in that case is the following:
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Definition 7. A topological spacéX, 7) is NY-metacompact if for every open covéin
X we have an open refineméathich isNN-point finite in X .

Of course we have:
o-metacompact=- N"-metacompact=- weakly o-metacompact
= metalindedf (*).
and the arrows can not be reversed at all. Indeed, after #radterizations in [20] and our
theorems 9 and 16, the examples of compact subsets digtimiggiin the relations
Eberlein compact=- Talagrand compact> Gul’ko compact

= Corson compact

provide us with examples to distinguish between the coggpioperties in (*).
For expandability we now need the following:

Definition 8. Let.A be a family of subsets of a topological spdég 7). We shall say that
A is NN-point-finitely expandable whed can be indexed agl = {4; : i € I} and for
everyi € I there exists an open st D A; in X such that the indexed fami{y=,; : i € I'}
in indexNY-point finite.

Now we have

Theorem 12. Let (X, 7) be aK-analytic topological space. Then the spdeg(X), 7,)
has aNN-point-finitely expandable network.

Proof. As in the proof of Theorem 4, but now we haXe= U{X,, : o € N} whereX,,
is a compact subset of andX,, C X3 wheneveiv < 3 € NV, . O

Of course we also have the result corresponding to propaditi

Proposition 13. Let (X, 7) be a topological space with B"-point-finitely expandable
network. ThenX is hereditarilyN"-metacompact.

Proof. It follows the arguments of Proposition 5. Now we use the weéaracterization
(i) in Theorem 11 and the Remark 6, instead of the weak|yoint finite characterization
for the open expansiof(; : i € I} of the network\/. O

Consequently we have:

Corollary 14. For everyK-analytic topological space, (c1(X), 7,) is hereditarilyN"-
metacompact and, in particular, hereditarily submetacantp

Corollary 15. Every Talagrand compact space has\d-point-finitely expandable net-
work and it is hereditariyNY-metacompact too.

The proof of Proposition 8 can be also adaptedNtemetacompact spaces. Then we
have all the ingredients for the proof of:

Theorem 16. The following are equivalent for a compact space
(i) X is Talagrand compact;
(i) X2\ Ais NN-metacompact;
(i) X? is hereditarilyNY-metacompact;
(iv) X admits aN"-point-finitely expandable network.
Proof. It follows the scheme of the proof of Theorem 9 and it is usee tiee following

“Rosenthal-type” theorem for Talagrand compact spaces fttiows from Farmaki [18]:
d

Theorem 17. A compact space is Talagrand compact if, and only if, there exists a
NN-point finite family.4 of openF,-subsets o, whichTy-separates the points of .
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Proof. It follows from Farmaki's Theorem because the extra assiomjin [18] of A being
point countable is not necessary, since ewétypoint finite family is point countable by
Theorem 1. O

Problem 1. Find a network characterization for the class of Corson canifspaces. See
[13].

Acknowledgments. The authors wish to thank the referee for his suggestionscand
ments which helped a lot to improve the final presentatiomeftaper.
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